Mittwoch, 17. Dezember 2014

Meldungen aus Analytik & Labor


Unsere wissenschaftliche Redaktion stellt für Sie regelmäßig
interessante Branchensplitter rund um Labor, Analytik, Chemie
und Qualitätsmanagement zusammen.

Bleiben Sie stets informiert!

Ihr Ansprechpartner

Michael Auert

Michael Auert

Diplom-Chemiker

+49 (0) 681 / 982 10 - 13
Anders als im LOHAFEX-Experiment aus dem Jahr 2009 konnte bei EIFEX gezeigt werden, dass größere Mengen Kohlenstoff aus einer induzierten Algenblüte auf den Meeresgrund absinken. Die nach intensiver Auswertung nun veröffentlichten Ergebnisse liefern einen wertvollen Beitrag zum besseren Verständnis des globalen Kohlenstoffkreislaufs.

Ein internationales Forscherteam hatte im Frühjahr 2004 (also im Spätsommer auf der Südhalbkugel) von Bord des Forschungsschiffes Polarstern einen Teil eines stabilen Ozeanwirbels im Südpolarmeer mit gelöstem Eisen gedüngt und so eine Blüte von einzelligen Algen (Phytoplankton) angeregt. Im Anschluss hatten die Wissenschaftler fünf Wochen lang die Entwicklung der Phytoplankton-Blüte vom Beginn der Blüte bis zum Absterben verfolgt. Dabei gelang ihnen der Nachweis, dass sich in den durchmischten oberen Wasserschichten bis zu einer Tiefe von 100 Metern eine große Blüte ausbildete. Die maximale Biomasse war mit einem Spitzenwert von 286 Milligramm Chlorophyllgehalt pro Quadratmeter höher als in den Blüten, die in den bisherigen zwölf Eisendüngungsexperimenten hervorgerufen worden waren. Dies ist besonders bemerkenswert, weil die EIFEX-Blüte sich in einer durchmischten Wasserschicht bis 100m Tiefe entwickelte, was viel tiefer ist als die bisher angenommene Untergrenze für die Entwicklung von Algenblüten, so die Autoren um Prof. Dr. Victor Smetacek und Dr. Christine Klaas vom Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft.

Die Blüte bestand hauptsächlich aus Kieselalgen (Diatomeen), eine Algengruppe, welche gelöstes Silikat benötigt, um ihre Schalen zu bilden. Es ist bekannt, dass Kieselalgen am Ende der Blüte größere, schleimige Aggregate formen, die schnell in die Tiefe sinken. „Wir konnten nachweisen, dass über 50 Prozent der Planktonblüte mehr als 1000 Meter tief absanken. Dies deutet darauf hin, dass ein Teil des Kohlenstoffs der Algenblüte über Zeitskalen von mehr als hundert Jahren im tiefen Ozean und in den Sedimenten am Meeresboden gespeichert werden kann“, sagt Smetacek.

Diese Ergebnisse stehen im Gegensatz zu denen des LOHAFEX-Experimentes, das im Jahr 2009 durchgeführt worden war. Bei LOHAFEX waren im gedüngten Meereswirbel aufgrund anderer Nährstoffverhältnisse, speziell durch das Fehlen von gelöstem Silikat, kaum Kieselalgen gewachsen. Stattdessen bestand die Planktonblüte aus anderen Algenarten, die jedoch keine schützende Schale besaßen und leichter von Zooplankton gefressen wurden. „Dies zeigt, wie unterschiedlich Organismengemeinschaften auf die Zugabe von Eisen im Ozean reagieren können“, sagt Dr. Christine Klaas. „Von den Laboranalysen und der weiteren wissenschaftlichen Auswertung der LOHAFEX-Daten erwarten wir ein ähnlich detailliertes Verständnis der Umsetzungswege von Kohlenstoff zwischen Atmosphäre, Ozean und Meeresgrund“, ergänzt Prof. Dr. Wolf-Gladrow, der Leiter des Fachbereichs Biowissenschaften am Alfred-Wegener-Institut, der ebenfalls an der Nature-Studie beteiligt ist.

Eisen spielt im Klimasystem eine wichtige Rolle und wird in vielen biochemischen Prozessen wie zum Beispiel der Photosynthese benötigt. Es ist somit ein essentielles Element für die biologische Produktion im Meer und damit für die CO2-Aufnahme aus der Atmosphäre. In den vergangenen Eiszeiten war die Luft kälter und trockener als heute und mit dem Wind wurde mehr eisenhaltiger Staub von den Kontinenten in den Ozean eingetragen. Die Versorgung der Organismen im Meer mit Eisen war daher während der Eiszeiten höher. Mit einem Eisendüngungsexperiment wird dieser natürliche Vorgang unter kontrollierten Bedingungen nachgestellt.

„Solche kontrollierten Eisendüngungsexperimente im Ozean ermöglichen es uns, Hypothesen zu testen und Prozesse zu quantifizieren, welche nicht im Labor untersucht werden können. Diese Ergebnisse verbessern unser Verständnis der für den Klimawandel wichtigen Prozesse im Meer“, sagt Smetacek. Und als Antwort auf die Frage, warum vom Experiment bis zur Publikation in Nature so viel Zeit vergangen sei, sagt er: „Die Kontroverse über Eisendüngungsexperimente hat dazu geführt, dass unsere Ergebnisse vor ihrer Veröffentlichung sehr sorgfältig begutachtet wurden.“


Den ganzen Artikel finden Sie unter:

http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/detail/item/current_study_in_the_scientific_journal_nature_researchers_publish_results_of_an_iron_fertilisation/?cHash=03a8f8fb9affaed064b567e9bd6e085d

Quelle: Alfred-Wegener-Institut für Polar- und Meeresforschung (07/2012)


Originalpublikation:
Victor Smetacek, Christine Klaas et al. (2012): Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature doi:10.1038/nature11229

Zusammenfassung des Experiments:
Beim EIFEX Experiment haben die Forscher am 13./14. Februar 2004 eine Fläche von 150 Quadratkilometern (Kreis mit 14 Kilometern Durchmesser) innerhalb eines Ozeanwirbels im Antarktischen Zirkumpolarstrom mit sieben Tonnen Eisensulfat gedüngt. Das entspricht einer Eisenzugabe von einem hundertstel Gramm pro Quadratmeter. Die damit erzeugte Eisenkonzentration von 2 Nanomol pro Liter liegt im Bereich von Werten die im Kielwasser schmelzender Eisberge gemessen werden; in Küstenregionen liegen Eisenkonzentrationen deutlich höher.
Der Eintrag von Eisen regt in Regionen mit hohen Nährstoffkonzentrationen (Nitrat, Phosphat, Kieselsäure) und geringem Chlorophyllgehalt (so genannten high-nutrient / low-chlorophyll Regionen) das Wachstum von planktonischen Algen (Phytoplankton) an. Nach erfolgter Düngung wurde die Entwicklung der Planktonblüte mithilfe von ozeanographischen Standardmethoden über fünf Wochen untersucht. Vom Oberflächenwasser bis in eine Tiefe von über 3000 Metern wurden regelmäßig Chlorophyll, organischer Kohlenstoff, Stickstoff, Phosphat und andere Parameter gemessen, um das Entstehen, Absterben und Absinken der Blüte und den damit verbundenen Kohlenstofftransport zu verfolgen. Desweiteren wurden die auftretenden Phyto- und Zooplanktonarten sowie Bakterien bestimmt. Der Chlorophyllgehalt stieg 24 Tage lang nach der Düngung an. Anschließend bildeten sich Phytoplanktonaggregate, die innerhalb weniger Tage bis in Tiefen von 3700 Metern absanken. Lange Stacheln an den Kieselalgen und schleimartige Substanzen führten zur Aggregatbildung und zum Abtransport des gebundenen Kohlenstoffs aus den oberflächennahen Wasserschichten zum Meeresboden. Dieser Prozess wurde bis zum Ende der Untersuchungen fünf Wochen nach Beginn der Düngung beobachtet.